Copied to
clipboard

G = C22×D45order 360 = 23·32·5

Direct product of C22 and D45

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C22×D45, C182D10, C102D18, C452C23, C902C22, C30.45D6, C6.13D30, (C2×C90)⋊3C2, (C2×C18)⋊3D5, (C2×C10)⋊5D9, C92(C22×D5), C52(C22×D9), (C2×C30).5S3, (C2×C6).4D15, C3.(C22×D15), C15.2(C22×S3), SmallGroup(360,49)

Series: Derived Chief Lower central Upper central

C1C45 — C22×D45
C1C3C15C45D45D90 — C22×D45
C45 — C22×D45
C1C22

Generators and relations for C22×D45
 G = < a,b,c,d | a2=b2=c45=d2=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd=c-1 >

Subgroups: 888 in 96 conjugacy classes, 41 normal (13 characteristic)
C1, C2, C2, C3, C22, C22, C5, S3, C6, C23, C9, D5, C10, D6, C2×C6, C15, D9, C18, D10, C2×C10, C22×S3, D15, C30, D18, C2×C18, C22×D5, C45, D30, C2×C30, C22×D9, D45, C90, C22×D15, D90, C2×C90, C22×D45
Quotients: C1, C2, C22, S3, C23, D5, D6, D9, D10, C22×S3, D15, D18, C22×D5, D30, C22×D9, D45, C22×D15, D90, C22×D45

Smallest permutation representation of C22×D45
On 180 points
Generators in S180
(1 168)(2 169)(3 170)(4 171)(5 172)(6 173)(7 174)(8 175)(9 176)(10 177)(11 178)(12 179)(13 180)(14 136)(15 137)(16 138)(17 139)(18 140)(19 141)(20 142)(21 143)(22 144)(23 145)(24 146)(25 147)(26 148)(27 149)(28 150)(29 151)(30 152)(31 153)(32 154)(33 155)(34 156)(35 157)(36 158)(37 159)(38 160)(39 161)(40 162)(41 163)(42 164)(43 165)(44 166)(45 167)(46 96)(47 97)(48 98)(49 99)(50 100)(51 101)(52 102)(53 103)(54 104)(55 105)(56 106)(57 107)(58 108)(59 109)(60 110)(61 111)(62 112)(63 113)(64 114)(65 115)(66 116)(67 117)(68 118)(69 119)(70 120)(71 121)(72 122)(73 123)(74 124)(75 125)(76 126)(77 127)(78 128)(79 129)(80 130)(81 131)(82 132)(83 133)(84 134)(85 135)(86 91)(87 92)(88 93)(89 94)(90 95)
(1 73)(2 74)(3 75)(4 76)(5 77)(6 78)(7 79)(8 80)(9 81)(10 82)(11 83)(12 84)(13 85)(14 86)(15 87)(16 88)(17 89)(18 90)(19 46)(20 47)(21 48)(22 49)(23 50)(24 51)(25 52)(26 53)(27 54)(28 55)(29 56)(30 57)(31 58)(32 59)(33 60)(34 61)(35 62)(36 63)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(91 136)(92 137)(93 138)(94 139)(95 140)(96 141)(97 142)(98 143)(99 144)(100 145)(101 146)(102 147)(103 148)(104 149)(105 150)(106 151)(107 152)(108 153)(109 154)(110 155)(111 156)(112 157)(113 158)(114 159)(115 160)(116 161)(117 162)(118 163)(119 164)(120 165)(121 166)(122 167)(123 168)(124 169)(125 170)(126 171)(127 172)(128 173)(129 174)(130 175)(131 176)(132 177)(133 178)(134 179)(135 180)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180)
(1 73)(2 72)(3 71)(4 70)(5 69)(6 68)(7 67)(8 66)(9 65)(10 64)(11 63)(12 62)(13 61)(14 60)(15 59)(16 58)(17 57)(18 56)(19 55)(20 54)(21 53)(22 52)(23 51)(24 50)(25 49)(26 48)(27 47)(28 46)(29 90)(30 89)(31 88)(32 87)(33 86)(34 85)(35 84)(36 83)(37 82)(38 81)(39 80)(40 79)(41 78)(42 77)(43 76)(44 75)(45 74)(91 155)(92 154)(93 153)(94 152)(95 151)(96 150)(97 149)(98 148)(99 147)(100 146)(101 145)(102 144)(103 143)(104 142)(105 141)(106 140)(107 139)(108 138)(109 137)(110 136)(111 180)(112 179)(113 178)(114 177)(115 176)(116 175)(117 174)(118 173)(119 172)(120 171)(121 170)(122 169)(123 168)(124 167)(125 166)(126 165)(127 164)(128 163)(129 162)(130 161)(131 160)(132 159)(133 158)(134 157)(135 156)

G:=sub<Sym(180)| (1,168)(2,169)(3,170)(4,171)(5,172)(6,173)(7,174)(8,175)(9,176)(10,177)(11,178)(12,179)(13,180)(14,136)(15,137)(16,138)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,145)(24,146)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,96)(47,97)(48,98)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,113)(64,114)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,133)(84,134)(85,135)(86,91)(87,92)(88,93)(89,94)(90,95), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(91,136)(92,137)(93,138)(94,139)(95,140)(96,141)(97,142)(98,143)(99,144)(100,145)(101,146)(102,147)(103,148)(104,149)(105,150)(106,151)(107,152)(108,153)(109,154)(110,155)(111,156)(112,157)(113,158)(114,159)(115,160)(116,161)(117,162)(118,163)(119,164)(120,165)(121,166)(122,167)(123,168)(124,169)(125,170)(126,171)(127,172)(128,173)(129,174)(130,175)(131,176)(132,177)(133,178)(134,179)(135,180), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,64)(11,63)(12,62)(13,61)(14,60)(15,59)(16,58)(17,57)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46)(29,90)(30,89)(31,88)(32,87)(33,86)(34,85)(35,84)(36,83)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146)(101,145)(102,144)(103,143)(104,142)(105,141)(106,140)(107,139)(108,138)(109,137)(110,136)(111,180)(112,179)(113,178)(114,177)(115,176)(116,175)(117,174)(118,173)(119,172)(120,171)(121,170)(122,169)(123,168)(124,167)(125,166)(126,165)(127,164)(128,163)(129,162)(130,161)(131,160)(132,159)(133,158)(134,157)(135,156)>;

G:=Group( (1,168)(2,169)(3,170)(4,171)(5,172)(6,173)(7,174)(8,175)(9,176)(10,177)(11,178)(12,179)(13,180)(14,136)(15,137)(16,138)(17,139)(18,140)(19,141)(20,142)(21,143)(22,144)(23,145)(24,146)(25,147)(26,148)(27,149)(28,150)(29,151)(30,152)(31,153)(32,154)(33,155)(34,156)(35,157)(36,158)(37,159)(38,160)(39,161)(40,162)(41,163)(42,164)(43,165)(44,166)(45,167)(46,96)(47,97)(48,98)(49,99)(50,100)(51,101)(52,102)(53,103)(54,104)(55,105)(56,106)(57,107)(58,108)(59,109)(60,110)(61,111)(62,112)(63,113)(64,114)(65,115)(66,116)(67,117)(68,118)(69,119)(70,120)(71,121)(72,122)(73,123)(74,124)(75,125)(76,126)(77,127)(78,128)(79,129)(80,130)(81,131)(82,132)(83,133)(84,134)(85,135)(86,91)(87,92)(88,93)(89,94)(90,95), (1,73)(2,74)(3,75)(4,76)(5,77)(6,78)(7,79)(8,80)(9,81)(10,82)(11,83)(12,84)(13,85)(14,86)(15,87)(16,88)(17,89)(18,90)(19,46)(20,47)(21,48)(22,49)(23,50)(24,51)(25,52)(26,53)(27,54)(28,55)(29,56)(30,57)(31,58)(32,59)(33,60)(34,61)(35,62)(36,63)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(91,136)(92,137)(93,138)(94,139)(95,140)(96,141)(97,142)(98,143)(99,144)(100,145)(101,146)(102,147)(103,148)(104,149)(105,150)(106,151)(107,152)(108,153)(109,154)(110,155)(111,156)(112,157)(113,158)(114,159)(115,160)(116,161)(117,162)(118,163)(119,164)(120,165)(121,166)(122,167)(123,168)(124,169)(125,170)(126,171)(127,172)(128,173)(129,174)(130,175)(131,176)(132,177)(133,178)(134,179)(135,180), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180), (1,73)(2,72)(3,71)(4,70)(5,69)(6,68)(7,67)(8,66)(9,65)(10,64)(11,63)(12,62)(13,61)(14,60)(15,59)(16,58)(17,57)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46)(29,90)(30,89)(31,88)(32,87)(33,86)(34,85)(35,84)(36,83)(37,82)(38,81)(39,80)(40,79)(41,78)(42,77)(43,76)(44,75)(45,74)(91,155)(92,154)(93,153)(94,152)(95,151)(96,150)(97,149)(98,148)(99,147)(100,146)(101,145)(102,144)(103,143)(104,142)(105,141)(106,140)(107,139)(108,138)(109,137)(110,136)(111,180)(112,179)(113,178)(114,177)(115,176)(116,175)(117,174)(118,173)(119,172)(120,171)(121,170)(122,169)(123,168)(124,167)(125,166)(126,165)(127,164)(128,163)(129,162)(130,161)(131,160)(132,159)(133,158)(134,157)(135,156) );

G=PermutationGroup([[(1,168),(2,169),(3,170),(4,171),(5,172),(6,173),(7,174),(8,175),(9,176),(10,177),(11,178),(12,179),(13,180),(14,136),(15,137),(16,138),(17,139),(18,140),(19,141),(20,142),(21,143),(22,144),(23,145),(24,146),(25,147),(26,148),(27,149),(28,150),(29,151),(30,152),(31,153),(32,154),(33,155),(34,156),(35,157),(36,158),(37,159),(38,160),(39,161),(40,162),(41,163),(42,164),(43,165),(44,166),(45,167),(46,96),(47,97),(48,98),(49,99),(50,100),(51,101),(52,102),(53,103),(54,104),(55,105),(56,106),(57,107),(58,108),(59,109),(60,110),(61,111),(62,112),(63,113),(64,114),(65,115),(66,116),(67,117),(68,118),(69,119),(70,120),(71,121),(72,122),(73,123),(74,124),(75,125),(76,126),(77,127),(78,128),(79,129),(80,130),(81,131),(82,132),(83,133),(84,134),(85,135),(86,91),(87,92),(88,93),(89,94),(90,95)], [(1,73),(2,74),(3,75),(4,76),(5,77),(6,78),(7,79),(8,80),(9,81),(10,82),(11,83),(12,84),(13,85),(14,86),(15,87),(16,88),(17,89),(18,90),(19,46),(20,47),(21,48),(22,49),(23,50),(24,51),(25,52),(26,53),(27,54),(28,55),(29,56),(30,57),(31,58),(32,59),(33,60),(34,61),(35,62),(36,63),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(91,136),(92,137),(93,138),(94,139),(95,140),(96,141),(97,142),(98,143),(99,144),(100,145),(101,146),(102,147),(103,148),(104,149),(105,150),(106,151),(107,152),(108,153),(109,154),(110,155),(111,156),(112,157),(113,158),(114,159),(115,160),(116,161),(117,162),(118,163),(119,164),(120,165),(121,166),(122,167),(123,168),(124,169),(125,170),(126,171),(127,172),(128,173),(129,174),(130,175),(131,176),(132,177),(133,178),(134,179),(135,180)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180)], [(1,73),(2,72),(3,71),(4,70),(5,69),(6,68),(7,67),(8,66),(9,65),(10,64),(11,63),(12,62),(13,61),(14,60),(15,59),(16,58),(17,57),(18,56),(19,55),(20,54),(21,53),(22,52),(23,51),(24,50),(25,49),(26,48),(27,47),(28,46),(29,90),(30,89),(31,88),(32,87),(33,86),(34,85),(35,84),(36,83),(37,82),(38,81),(39,80),(40,79),(41,78),(42,77),(43,76),(44,75),(45,74),(91,155),(92,154),(93,153),(94,152),(95,151),(96,150),(97,149),(98,148),(99,147),(100,146),(101,145),(102,144),(103,143),(104,142),(105,141),(106,140),(107,139),(108,138),(109,137),(110,136),(111,180),(112,179),(113,178),(114,177),(115,176),(116,175),(117,174),(118,173),(119,172),(120,171),(121,170),(122,169),(123,168),(124,167),(125,166),(126,165),(127,164),(128,163),(129,162),(130,161),(131,160),(132,159),(133,158),(134,157),(135,156)]])

96 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 5A5B6A6B6C9A9B9C10A···10F15A15B15C15D18A···18I30A···30L45A···45L90A···90AJ
order1222222235566699910···101515151518···1830···3045···4590···90
size1111454545452222222222···222222···22···22···22···2

96 irreducible representations

dim1112222222222
type+++++++++++++
imageC1C2C2S3D5D6D9D10D15D18D30D45D90
kernelC22×D45D90C2×C90C2×C30C2×C18C30C2×C10C18C2×C6C10C6C22C2
# reps1611233649121236

Matrix representation of C22×D45 in GL3(𝔽181) generated by

100
01800
00180
,
18000
01800
00180
,
100
0108149
03276
,
100
0137119
07544
G:=sub<GL(3,GF(181))| [1,0,0,0,180,0,0,0,180],[180,0,0,0,180,0,0,0,180],[1,0,0,0,108,32,0,149,76],[1,0,0,0,137,75,0,119,44] >;

C22×D45 in GAP, Magma, Sage, TeX

C_2^2\times D_{45}
% in TeX

G:=Group("C2^2xD45");
// GroupNames label

G:=SmallGroup(360,49);
// by ID

G=gap.SmallGroup(360,49);
# by ID

G:=PCGroup([6,-2,-2,-2,-3,-5,-3,3267,741,2884,8645]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^45=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d=c^-1>;
// generators/relations

׿
×
𝔽